

Case Study: A Low-Carbon, Mass-Timber Arena

Bruce Haglund, Tristan Sahwell, Shristi Tamrakar

Idaho Central Credit Union Arena University of Idaho

Size: 66,186 SF Location: Moscow, Idaho, USA Stat: 4,000 seats for basketball and 4,700 seats for concerts

Architect: Opsis Architects Sports Architect: Hastings & Chivetta Architects General Contractor: Hoffman Construction Base Building Engineer: KPFF Roof Engineer- Build: StructureCraft

> Image credits: Opsis Architects Cover image credits: Structurecreate

Forms of Palouse Form of the Arena

"The undulating roof forms recall the surrounding Palouse landscape" *Opsis Architects*.

Glu-lam Beams

UI's Experimental Forest

"The industry as a whole is proud of the project. It's such a large collaboration. You have this gorgeous architectural wonder whose materials are supplied from partners throughout the state of Idaho. When we look at it, we see the amazing creativity of how we can utilize mass timber." - Jennifer Okerlund, executive director of the Idaho Forest Products Commission

Timber in the PNW

Ę

Image credits: 1)Vaagen timber 2)UI

Is a net-zero-carbon arena possible?

Image credits: University of Ida

THROUGHO!

This January we learned that the embodied carbon didn't totally offset the carbon footprint. Even though Athena cautioned about comparison, we wanted to contextualize the results with two case studies.

- 1. Concrete-clad Swiss Life Arena in Zurich.
- 2. Mid-rise buildings in Toronto analyzed by architecture students in Kelly Doran's Ha/f Studio

Our LCA included only embodied carbon

Ę

The Results

Total (A-C)
1.31E+06
9.75E+03
1.58E+03
4.98E-02
1.97E+05
2.29E+07
2.03E+07
1.78E+07

Table 9 Summary LCA results (A-C), including biogenic carbon

A.I.S

Environmental Indicator	tor Unit		Per m ²	
Global Warming Potential	kg CO2 eq.	1.31E+06	2.13E+02	
Acidification Potential	kg SO ₂ eq.	9.75E+03	1.59E+00	
Eutrophication Potential	kg N eq.	1.58E+03	2.57E-01	
Ozone Depletion Potential	kg CFC-11 eq.	4.98E-02	8.10E-06	
Smog Formation Potential	kg O₃ eq.	1.97E+05	3.20E+01	
Total Primary Energy	MJ	2.29E+07	3.72E+03	
Non-renewable Energy	MJ	2.03E+07	3.30E+03	
Fossil Fuel Consumption	MJ	1.78E+07	2.90E+03	

Table 1. Carbon embodiment in different structures (Doran, 2021).

Ţ

G+3 G+2	Wood Frame	203	283
G+2			205
	Wood Frame	136	243
G+3	Wood Frame	342	227
AGE			251
G+6	Hollowcore & Steel	859	395
G+7	Concrete	1,522	596
G+12	Concrete	2,289	366
G+13	Concrete	4,529	615
G+14	Concrete	1,911	469
GE			488
G+53	Concrete	20,618	494
G+60	Concrete	10,644	546
AGE			520
	G+7 G+12 G+13 G+14 GE G+53	G+6 Hollowcore & Steel G+7 Concrete G+12 Concrete G+13 Concrete G+14 Concrete G+53 Concrete G+53 Concrete	G+6 Hollowcore & 859 G+7 Concrete 1,522 G+12 Concrete 2,289 G+13 Concrete 4,529 G+14 Concrete 1,911 GE G+53 Concrete 20,618 G+60 Concrete 10,644

ICCU @ 213 kgCO2eq/m2

87%

Counter Balancing Carbon with Timber

87% of the total embodied energy is from concrete. Athena

Image credits: Bruce Haglund

IN PRACTICE

'Over 90% of concrete used in construction could be replaced with timber' Or with stone.

20 JULY 2023 . BY FRAN WILLIAMS

Conclusion:

Announcing a Breakthrough in Carbon-Negative Concrete

This Oregon winery may spark a revolution in sustainable concrete applications.

Brought to you by Build With Strength

Winemaker Remy Drabkin and her builder, John Mead

What about site concrete paving?

Questions?

POLITICS

'Stick to net zero strategy,' UN climate chief tells world leaders

